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Abstract - This work deals with structural damage detection using synthetic displacement measurements as exper-
imental data to be used by two different methodologies: the conjugate gradient method with the adjoint equation
and an artificial neural network. Both techniques have been employed in order to place and quantify the time-
variable damage in a simple truss structure. Estimation errors have been reported in order to make possible a
comparison of the two methodologies.

1. INTRODUCTION
Considerable research and effort over the last few decades has taken place in the field of system identification
problem, for different reasons. One of the most interesting applications involves the monitoring of structural
integrity through the identification of damage. It is well known that damage modifies the dynamic response of
a structure and, at the same time, that changes in its behavior may be associated with the decay of the system’s
mechanical properties [16].

The damage identification problem is displayed as an inverse vibration problem, since the damage evaluation
is achieved through the determination of the stiffness coefficient variation, or the stiffness coefficient by itself.
The inverse problem solution is generally unstable, therefore, small perturbations in the input data, like random
errors inherent to the measurements used in the analysis, can cause large oscillations on the solution. In general
the inverse problem, i.e. the ill-posed problem, is presented as a well-posed functional form, whose solution is
obtained through an optimization procedure.

Based on these considerations, several works have examined the use of measured variations in dynamic be-
havior to detect structural damage. A variety of experimental, numerical and analytical techniques has already
been proposed to solve the damage identification problem, and have received notable attention due to its practical
applications [7]. These methods are usually classified under several categories, such as frequency and time domain
methods, parametric and non-parametric models, deterministic and stochastic approaches [6, 4].

Among the classical methods, recently the use of the conjugate gradient method with the adjoint equation [1,
12], or Variational Approach, which has been used successfully in thermal sciences [6], has also been presented as
a satisfactory choice to face the damage identification problem.

Some works regarding the use of the variational approach in inverse vibration problems can be found in the
literature, for instance, Huang [10, 11] has estimated the time-dependent stiffness coefficients considering spring-
mass systems with one and multiple degrees of freedom. Also, Castello and Rochinha [5] have identified the elastic
and damping parameters of a bar-like structure using the adjoint equation approach. On the other hand, among the
non-classical stochastic methods, the Artificial Neural Networks (ANNs) represent a powerful choice for solving
non trivial problems. The fault tolerance, generalization capabilities of ANN’s make them attractive to approach
inverse problems.

Works regarding the use of ANN methods to solve the damage identification problem have been reported in
the literature employing different neural network models, either multi-layer perceptrons [17, 3, 18] or radial basis
functions [2, 13]. In this work both the Variational approach and ANN method have been used to estimate the
time-dependent stiffness of a simple truss structure. The estimation errors concerning both methodologies have
been employed in order to evaluate the estimation quality of the two different techniques.

2. THE DIRECT PROBLEM
TheN -DOF damped system considered in this work is presented in Figure 1 and the mathematical formulation of
this forced vibration systems is given by

Mẍ(t) + Cẋ(t) + K(t)x(t) = f(t) , (1)
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with initial conditions
x(0) = x0 and ẋ(0) = ẋ0 . (2)

In eqn. (1)M represents the system mass matrix,K(t) the time-dependent stiffness matrix,C the damping
matrix, f(t) the external forces vector, andx(t) the displacements vector. There exists no analytical solution for
eqns. (1)-(2) for any arbitrary functions ofK(t), C, andf(t). For this reason the numerical solution with the
Newmarkmethod [15] is applied to solve the direct problem. This problem calculates the system displacement
vectorx(t), if initial conditions, system parametersM, K(t) andC, and the time-dependent external forcesf(t)
are known.
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Figure 1: The truss structure considered in this work.

3. THE VARIATIONAL APPROACH
The goal of this work is to recover the unknown time-dependent stiffness coefficients from the synthetic system
displacement measurements of a truss structure with N-DOF (Figure 1). The inverse analysis with the conjugate
gradient method involves the following steps [1, 12]: (i) the solution of the direct problem; (ii) the solution of the
sensitivity problem; (iii) the solution of the adjoint problem and the gradient equation; (iv) the conjugate gradient
method of minimization; (v) the stopping criteria. Next, a brief description of basic procedures involved in each of
these steps is presented.

3.1. The Sensitivity Problem
This problem involvesN unknown time-dependent stiffness parameters, which constitute the elements of the stiff-
ness matrixK(t) = f [K(t)], whereK(t) = [K1(t), ...,KN (t)] and the parametersKi(t), i = 1, ..., N represent
the structural stiffness parameters of the finite element; for instance for a bar-like structureKi = EA/Le, where
E is the Young’s module,A is the cross section area andLe is the length of the finite element. In order to derive
the sensitivity problem for each unknown functionKi(t), each unknown stiffness parameter should be perturbed
at a time. Supposing thatKi(t) is perturbed by a small amount4Ki(t) δ(i− j), where theδ(·) is the Dirac-delta
function andj = 1, . . . , N , results in a small change in displacements by the amounts of4xij(t). The sensitivity
problem is obtained by replacing in the direct problem, Eqs. (1)-(2),Ki(t) by Ki(t) + 4Ki(t) δ(i − j), xi(t)
by xi(t) +4xij(t), and by subtracting the original direct problem from the resulting expression, and also by ne-
glecting the second-order terms. Therefore,N sensitivity problems have been obtained, sincej = 1, . . . , N , i.e.,
a different sensitivity problem for each perturbed stiffness parameter. The sensitivity problem is defined by the
following system of differential equations

M4ẍj(t) + C(t)4ẋj(t) + K(t)4xj(t) = 4Kj(t)x(t) , (3)

wherej = 1, . . . , N and with initial conditions

4xj(0) = 0 and 4ẋj(0) = 0 . (4)

3.2. The Adjoint Problem and the Gradient Equation
The inverse problem is to be solved as an optimization problem requiring that the unknown functionK(t) minimize
the functionalJ [K(t)] defined by

J [K(t)] =
∫ tf

0

[x(t)− xexp(t)]T [x(t)− xexp(t)] dt, (5)
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wheretf is the final time,x(t) andxexp(t) are the computed and measured displacements at timet, respectively.
For solving the minimization problem (5), theLagrangemultiplier vectorλ(t) is usually used to associate the
constraints (1) to the functional form

J [K] =
∫ tf

0

[x− xexp]T [x− xexp] dt +
∫ tf

0

λT {Mẍ + Cẋ + Kx− f} dt . (6)

Computing the differential of the functional form and knowing that the coefficient of4x shall vanish, for conve-
nience the vectorλ has been chosen to be the solution of the adjoint problem:

M λ̈(t)−C(t) λ̇(t) + K(t) λ(t) = 2 [xexp(t)− x(t)] , (7)

with final conditions
λ(tf ) = 0 and λ̇(tf ) = 0 . (8)

Applying the variational theory [12], the left term is employed to determine the gradientJ [K], which is given by

J ′
j [K] =

∫ tf

0

λT 4K̃j x dt , (9)

where4K̃j refers to thejth perturbed stiffness matrix, i.e.4K̃j = ∂[4K]/∂Kj(t).

3.3. The Conjugate Gradient Method of Minimization
The iterative procedure based on the conjugate gradient method is used for the estimation of the unknown stiffness
parametersK given in the form [1, 12]:

Kn+1 = Kn − βn Pn, n = 0, 1, 2, ....,

Pn = J ′n + γn Pn−1, with γ0 = 0, (10)

whereβn is the step size vector,Pn is the direction of descent vector andγn is the conjugate coefficient vector.
The step size vectorβn, appearing in eqn. (10), is determined by minimizing the functional vectorJ [Kn+1] given
by eqn. (5) with respect toβn. For the stopping criterion the discrepancy principle has been taken as

J [Kn+1] < ε2, (11)

whereε2 = Nσ2tf , andσ is the standard deviation of the measurements errors.

4. MULTILAYER PERCEPTRON NEURAL NETWORK
Artificial Neural Networks (ANN) have become important tools for information processing [9]. Much research has
been conducted in pursuing new neural network models and adapting the existing ones to solve real life problems,
such as those in engineering [9]. ANNs are made of arrangements of processing elements called neurons. The
artificial neuron model basically consists of a linear combiner followed by an activation function (Figure 2(a)),
given by:

yk = ϕ

 n∑
j=1

wkj xj + bk

 , (12)

wherewkj are the connections weights,bk is a threshold parameter,xj is the input vector andyk is the output of
thekth neuron.
Arrangements of such units form the ANNs that are characterized by:

• Very simple neuron-like processing elements;

• Weighted connections between the processing elements;

• Highly parallel processing and distributed control;

• Automatic learning of internal representations.
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ANNs aim to explore the massively parallel network of simple elements in order to yield a result in a very short
time slice and, at the same time, with insensitivity to loss and failure of some of the elements of the network. These
properties make artificial neural networks appropriate for application in pattern recognition, signal processing,
image processing, financing, computer vision, engineering, etc.

There exist different ANN architectures that are dependent upon the learning strategy adopted. This paper
briefly describes the Multilayer Perceptron (MLP) with error backpropagation learning. Detailed introductions on
ANNs can be found in [9] and [14]. MLP with backpropagation learning algorithm, are feedforward networks
composed of an input layer, an output layer, and a number of hidden layers, whose aim is to extract high order
statistics from the input data [8]. Figure 2(b) depicts a multilayer neural network with a hidden layer.
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Figure 2:(a) Single Neuron, (b) Multilayer Neural Network.

Functionsϕ(·) provide the activation for the neuron. Neural networks will solve nonlinear problems, if non-
linear activation functions are used for the hidden and/or the output layers. From several activation functions, the
sigmoid are commonly used:

logistic function: ϕ(v) =
1

1 + exp(−av)
;

bipolar function: ϕ(v) =
1− exp(−av)
1 + exp(−av)

. (13)

A feedforward network can transform input vectors of real values onto output vector of real values. The
connections among the several neurons (Figure 2) have associated weights that are adjusted during the learning
process, thus changing the performance of the network. Two distinct phases can be devised while using an ANN:
the training phase (learning process) and the run phase (activation of the network). The training phase consists of
adjusting the weights for the best performance of the network in establishing the mapping of many input/output
vector pairs. Once trained, the weights are fixed and the network can be presented to new inputs for which it
calculates the corresponding outputs, based on what it has learned.

The error backpropagation training is a supervised learning algorithm that requires both input and output (de-
sired) data. Such pairs permit the calculation of the error of the network as the difference between the calculated
output and the desired vector. The weight adjustments are conducted by backpropagation such error to the network,
governed by a change rule. The weights are changed by an amount proportional to the error at that unit, times the
output of the unit feeding the weight. Equation (14) shows the general weight correction according to the so-called
delta rule

∆wkj = η δk yj , (14)

where,δk is the local gradient,yj is the input signal of neuronk, andη is the learning rate parameter that controls
the strength of change.

5. INVERSE PROBLEM SOLUTION BY ANN
In this work a MLP Neural Network is employed to solve the problem of the estimation of the time-dependent
stiffness coefficients of a truss structure (see Figure 1). This truss structure is composed by 4 bars and clamped at
one end. The unknown transient stiffness coefficients have been assumed as:

K1(t) = a1
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. (15)
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In order to give a good information to the neural network, a history of15 time steps is used, resulting in 60
inputs and 4 desired output units. For this reason, stiffness coefficients have been estimated from the fifteenth
time step. Although different neural networks topologies have been used, varying the number of hidden layers
and the number of neurons in each layer, one hidden layer with 10 neurons was sufficient to obtain good results.
The sigmoid activation function has been used in both hidden and output layers. Besides that, some numerical
experiments have been developed using a different model of neural network, the Radial Basis Function (RBF).
The estimation results obtained with the RBF model were worst than the ones obtained with the MLP and for this
reason they are not presented in this work.

5.1. Training
The training set is built up from the solution of the direct model (eqns. (1) and (2)) assuming several different
variations of the stiffness functions (eqns. (15)), generating the respective displacements. For the training phase the
desired output of the ANN are the stiffness coefficients, while the input of the ANN are the corresponding measured
displacements. For each assumed stiffness coefficient function the corresponding displacement is computed to
adjust the weight and bias which will be used in the activation phase. The training set was composed of 32 different
functions for the stiffness coefficients. This functions are defined trough the equations (15) where different values
for the parametersai, bi andci, for i = 1, . . . , 4, have been assumed.

6. NUMERICAL RESULTS
In this work the unknown time-dependent stiffness coefficients are estimated employing two different methodolo-
gies: a deterministic one represented by the variational approach, and a stochastic one represented by the artificial
neural networks. The estimation results are employed to produce both qualitative and quantitative comparison
considering a 4-bar truss structure, clamped at one (see Figure 1).

The referred truss structure is composed by aluminum bars (ρ = 2700 kg/m3 andE = 70 GPa ) with a
square cross section areaA = 25.0 × 10−4 m2, where the nondiagonal elements are1.0 m long. This numerical
example has used the finite element method to calculate the mass and the stiffness matrices that appear in eqn. (1);
note that for this example one finite element for each bar has been used. As far as the damping matrix is concerned,
it has been assumed that it is proportional to the undamaged stiffness matrixC = 5.0 × 10−5 K. Furthermore,
it has been assumed an external force of intensityf(t) = 1000.0 N applied at the vibrating nodes in the positive
diagonal direction constant with time and the following initial conditions have been adoptedx(0) = 0 andẋ(0) =
0. Numerical simulations have been performed assuming the final time astf = 5.0 × 10−2 s and a time step
4t = 5.0× 10−4 s.

The experimental data, i.e the displacements of the nodes of the structure alongx andy directions, have been
simulated by adding a random perturbation to the exact solution of the direct problem, such that

xexp(t) = x(t) [1 + σR] , (16)

whereσ is the standard deviation of the noise andR is a random variable taken from a Gaussian distribution, with
zero mean and unit variance. For numerical purposes, the estimation results have been obtained considering two
different cases: noiseless (σ = 0) and noisy experimental data (σ = 1%).

In order to evaluate the accuracy of the adopted methodologies, the error between the estimated stiffness
coefficients (̂K) and the corresponding exact values (Kexact) is defined by

E(K̂) =

∥∥∥∥∥Kexact(t)− K̂(t)
Kexact(t)

∥∥∥∥∥
2

2

, (17)

where‖ · ‖2 is the 2-norm. Also, the average error is computed considering the recovered functions for each
stiffness coefficient, whereM represents the number of functions to be evaluated:

E(K̂j) = E(K̂j)mean =
1
M

M∑
i=1

E(K̂j)i , where j = 1, . . . , 4 . (18)

The standard deviation of the estimation errors for the recovered stiffness coefficients has been calculated using
the expression

E(K̂j)std =

√√√√ 1
M

M∑
i=1

(
E(K̂j)i − E(K̂j)

)2

, where j = 1, . . . , 4 . (19)

Table 1 presents the parametersai, bi andci (i = 1, . . . , 4) which define, through the equations in (15), the 10
functions to be evaluated.

S04
5



Table 1: Parameters used in the generalization functions.

Function Case a1 a2 a3 a4 b1 b2 b3 b4 c1 c2 c3 c4

1 0.9 0.9 0.8 0.9 0.05 0.03 0.07 0.07 2.5 2.0 1.0 1.5
2 0.75 0.75 0.8 0.9 0.05 0.03 0.02 0.07 2.5 2.0 1.0 2.0
3 0.9 0.75 0.9 0.9 0.05 0.03 0.03 0.03 1.5 1.0 1.0 1.5
4 0.9 0.9 0.8 0.9 0.05 0.05 0.05 0.07 2.5 1.0 1.0 1.5
5 0.75 0.75 0.75 0.9 0.05 0.03 0.03 0.01 2.5 2.0 1.0 1.0
6 0.9 0.75 0.8 0.95 0.05 0.03 0.03 0.02 2.5 2.0 1.0 4.0
7 0.9 0.75 0.8 0.9 0.05 0.03 0.03 0.02 2.0 2.0 2.0 1.5
8 0.9 0.75 0.8 0.9 0.01 0.03 0.03 0.07 1.5 1.0 1.5 2.5
9 0.9 0.75 0.8 0.9 0.05 0.03 0.03 0.07 2.5 2.0 1.0 1.5
10 0.75 0.95 0.8 0.9 0.05 0.02 0.03 0.07 2.5 2.0 1.0 1.5

In order to obtain a better comparison between the methodologies, the estimation of the stiffness coefficients for
each test function presented in Table 1 has been computed using 50 realizations for different experimental noisy
data. Employing these estimation results, average errors and standard deviation of these errors are computed.
Statistical information are shown in tables of next Sections, where errorE(.)mean is given by eqn. (18). The
average of estimations of function type 9 (see Table 1) – average stiffness – is depicted graphically in Sections
6.1 and 6.2, using 50 different experimental noisy data, for both methods (the variational approach and the neural
network).

6.1. Variational Approach Results
The variational approach is an iterative procedure based on the conjugate gradient method for which the undamaged
configuration has been adopted as the initial guess. It should be noticed that the computed solutions forK, near
the initial and final times, are deviated from its correct values because the gradientJ ′[K] vanishes fort = 0 and
t = tf sincex(0) = 0 andλ(tf ) = 0. For this reason both the first and last time steps have been neglected.

Table 2: Variational Approach - Individual Average Error for noisy data.

Function Case E(K̂1)mean E(K̂2)mean E(K̂3)mean E(K̂4)mean

1 0.0066 0.1768 0.0684 0.0007
2 0.0352 0.1430 0.0389 0.0019
3 0.0080 0.1644 0.0976 0.0008
4 0.0062 0.1826 0.0569 0.0006
5 0.0326 0.1624 0.0248 0.0024
6 0.0062 0.1278 0.0451 0.0006
7 0.0084 0.1685 0.0406 0.0009
8 0.0342 0.1221 0.0437 0.0012
9 0.0184 0.1101 0.0480 0.0008
10 0.0084 0.1730 0.0492 0.0010

Tables 2 and 3 present the average error, defined by eqn. (18), and the standard deviation of the error, defined
by eqn. (19), respectively. Error values are small (K2 ∼ O(10−1) and the othersKi ∼ O(10−2)), denoting a good
performance of the method for all cases studied. It can be noted that the error for the same stiffness coefficient has
the same magnitude for each case. Small values found for the standard deviation imply that the estimation will be
a good one, because the errors are systematically small.

Figures 3 and 4 present a qualitative comparison between the estimated stiffness coefficients when noiseless and
noisy experimental data are used, respectively, by using the variational approach. In the noiseless case, a perfect
reconstruction is performed. However, the method shows its sensibility related to noise, where some oscillations
appear in the inverse solution, particularly it is pointed out in the first moments for theK1.

S04
6



Table 3: Variational Approach - Individual Standard Deviation for noisy data.

Function Case E(K̂1)mean E(K̂2)mean E(K̂3)mean E(K̂4)mean

1 0.0016 0.0623 0.0184 0.0002
2 0.0344 0.0274 0.0101 0.0004
3 0.0028 0.0393 0.0250 0.0002
4 0.0015 0.0546 0.0130 0.0002
5 0.0047 0.0329 0.0044 0.0004
6 0.0017 0.0265 0.0105 0.0002
7 0.0020 0.0337 0.0110 0.0002
8 0.0118 0.0277 0.0132 0.0003
9 0.0083 0.0257 0.0125 0.0001
10 0.0016 0.0372 0.0121 0.0002
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Figure 3: Average of the estimated stiffness coefficients for test function 9 using the Variational Approach (noise-
less data).
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Figure 4: Average of the estimated stiffness coefficients for test function 9 using the Variational Approach (1% of
noise).
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6.2. ANN Results
In the activation phase the inverse problem is solved by using the weights and bias obtained during the training
phase. The robustness of the trained MLP is evaluated employing displacement functions not used in the training
phase.

Table 4: Artificial Neural Network results - Individual Average Error for noisy data.

Function Case E(K̂1)mean E(K̂2)mean E(K̂3)mean E(K̂4)mean

1 0.0099 0.0535 0.0021 0.0019
2 0.0256 0.0130 0.0020 0.0060
3 0.0070 0.0135 0.0172 0.0018
4 0.0101 0.0553 0.0022 0.0019
5 0.0246 0.0194 0.0012 0.0021
6 0.0093 0.0167 0.0024 0.0066
7 0.0076 0.0160 0.0060 0.0014
8 0.0065 0.0173 0.0036 0.0047
9 0.0089 0.0155 0.0019 0.0014
10 0.0211 0.0406 0.0017 0.0025

Table 5: Artificial neural network - Individual Standard Deviation for noisy data.

Function Case E(K̂1)mean E(K̂2)mean E(K̂3)mean E(K̂4)mean

1 0.0009 0.0150 0.0004 0.0003
2 0.0014 0.0034 0.0002 0.0005
3 0.0008 0.0033 0.0012 0.0003
4 0.0010 0.0146 0.0003 0.0004
5 0.0014 0.0054 0.0002 0.0003
6 0.0008 0.0048 0.0003 0.0009
7 0.0008 0.0052 0.0006 0.0003
8 0.0009 0.0063 0.0004 0.0005
9 0.0008 0.0044 0.0003 0.0003
10 0.0008 0.0109 0.0003 0.0004
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Figure 5: Average of the estimated stiffness coefficients for the test function 9 using the Neural Network technique
(noiseless data).

The generalization capacity of the MLP is verified considering 10 different functions defined by eqns. (15)
where parametersai, bi andωi, for i = 1, 2, 3, 4, are presented in Table 1.

Tables 4 and 5 show the average error, defined by eqn. (18), and the standard deviation of the error, defined by
eqn. (19), respectively. The estimation using ANN presents small errors (K < O(10−1)). Therefore, the use of
ANNs is also a good strategy for the estimation of the stiffness coefficient with time dependency. These estimations
have a small standard deviation, smaller than those found for the variational method.
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Figure 6: Average of the estimated stiffness coefficients for test function 9 using the Neural Network technique
(1% of noise).

Figures 5 and 6 present a qualitative comparison between the estimated stiffness coefficients when noiseless
and noisy experimental data are used, respectively, by using the variational approach.

The estimation by ANN of function type-9 is shown in Figures 5 and 6. Some oscillations in the reconstruction
is found, even for the noiseless case. However, oscillations present in the estimation considering the noisy case,
are smaller than those seen in the inverse solution obtained using the variational approach.

7. CONCLUSIONS
The inverse vibration problem of estimating the unknown stiffness depending on time (damage identification with
time dependency) has been addressed using two different approaches, where a simple truss was used as a test
example. It should be pointed out that this example is more difficult than a spring-mass system used in a previous
work [17]. Several stiffness coefficients are employed to evaluate the methods.

Both strategies showed a good performance, presenting small errors and standard deviations. Table 6 shows
the average obtained from the average errors of the 10 test functions studied, previously presented in Tables 2 and
4. For both methods, the highest error is found in the estimation of theK2 coefficient, whilst the smallest error is
found in the estimation of theK4 coefficient. The estimation using ANN is better for almost all stiffness, only for
the stiffness-4 the variational approach presents a small error. Similar behaviour is found related to the standard
deviation: the ANN presents smaller standard deviation forKi (i = 1, 2, 3), and the variational approach has a
smaller standard deviation forK4.

Table 6: Methodologies Comparison - Individual Average Error for all the test functions (noisy data).

Methodology E(K̂1)mean E(K̂2)mean E(K̂3)mean E(K̂4)mean

Variational Approach 0.0164 0.1531 0.0513 0.0011
ANN Technique 0.0131 0.0261 0.0040 0.0030

Concerning the computational time requested by the methodologies used in this work, it should be pointed
out that the ANN have two different phases: training and activation. The training phase usually is very CPU time
consuming, and for the present problem it is requiring some hours. However, this step is done only one time. After
the training, the activation phase is very fast, usually takes less than one second. The latter phase represents the
real inverse problem solution. Regarding the variational approach, the CPU-time was around few seconds. All
computational simulations have been performed in a personal computer with a Pentium IV - 1.6 GHz processor.

Oscillations verified in the inverse solution using an ANN for the noiseless case are also found for all test func-
tions (not shown). However, the error in the reconstruction using an ANN is smaller than those found employing
the variational approach for the noisy data.

The mathematical derivation of the equations for the use in the variational approach is the biggest challenge
for this methodology. For ANNs, the difficulty lies in the selection of the appropriate data set for training.

The RBF model has also been applied in the estimation of time-dependent stiffness coefficients, however good
estimations have not been achieved, denoting that other RBF topologies should be explored in future works.
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